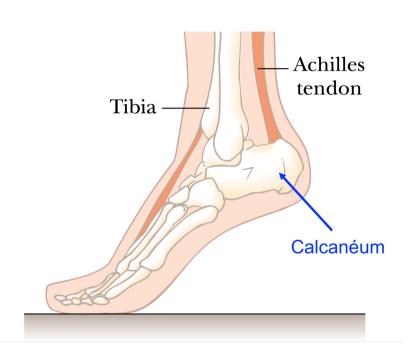


Physique Générale : Mécanique 12.01: Problème résolu: Statique: Equilibre sur la pointe des pieds

Sections SC, GC & SIE, BA1

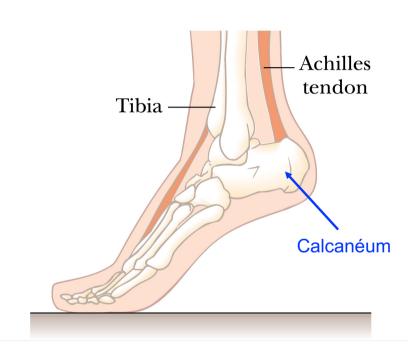
Dr. J.-P. Hogge


Swiss Plasma Center

École polytechnique fédérale de Lausanne

[■] Faculté

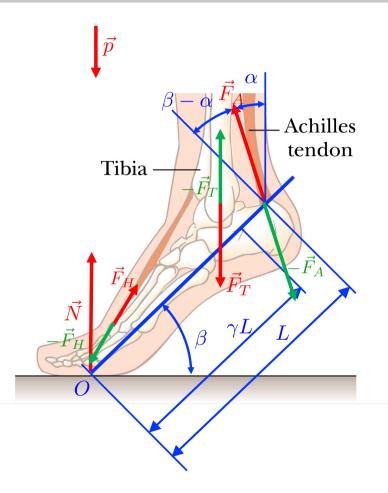
des sciences
de base



- Une personne de poids p se tient sur la pointe de pieds.
- Estimer les forces exercées par le tibia et le tendon d'Achille sur le calcanéum.

- Faculté des sciences de base
- SwissPlasmaCenter

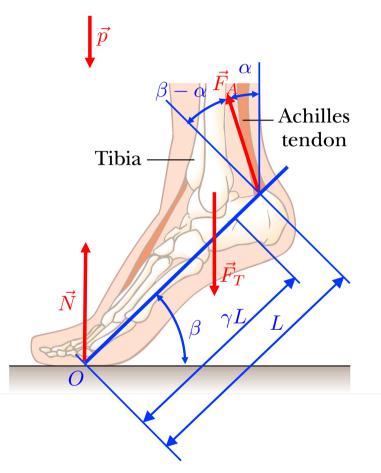
- Référentiel:
 - Laboratoire
- Système(s):
 - Corps entier
 - Le pied seul
- Contraintes:
 - Pas de contrainte particulière
- Equations utilisables:
 - Equations d'équilibre:


$$\sum \vec{F}^{\text{ext}} = 0$$

$$\sum \vec{M}_O^{\rm ext} = 0$$

On modélise le pied comme une tige rigide

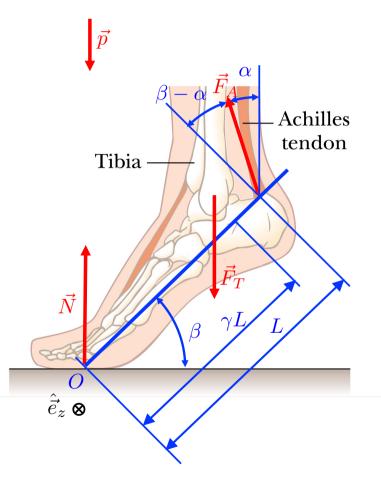
- Faculté des sciences de base
- SwissPlasmaCenter


- Forces extérieures au syst 'corps':
- Forces extérieures au syst. 'pied'

- On définit encore:
 - L Distance entre le point d'appui sur le sol et le point d'attache du tendon
 - $ightharpoonup \gamma L$ Distance jusqu'au tibia
 - Angle entre le tendon et la verticale
 - β Angle d'élévation du pied

■ Faculté des sciences de base

SwissPlasmaCenter


Equation de Newton appliquée au système 'Corps':

Equation de Newton appliquée au système 'pied':

on projette sur l'axe vertical et on remplace N par p:

- Faculté
 des sciences
 de base
- Swiss Plasma Center

Théorème du moment cinétique appliqué au système 'pied' au point O:

Application:

- Faculté des sciences de base
- Swiss
 Plasma
 Center